

ECO INDUSTRIAL PARK

ECO INDUSTRIAL PARK

PHASE 1- PUBLIC SERVICE MAINTENANCE FACILITY ALTERNATIVE FUEL FLEET/ INFRASTRUCTURE DISTRIBUTED GENERATION

PHASE 2- TRANSPORATION FUELING FACILITIES

PHASE 3- MATERIAL RECOVERY FACILITIES

ECO INDUSTRIAL PARK

Objective-Facilitate infrastructure improvements that will provide long term cost savings and address sustainability initiatives.

ECO INDUSTRIAL PARK PHASE ONE

Capital Improvement Program

City Facilities

Eco Industrial Park - Phase I Public Services Facility

	FIN
Category:	City Facilities
Department:	Public Services
Priority:	
Fund:	670 - Solid Waste
	610 - Sanitary Sewer
	110 - Road Use Fund
Est. Completion Date:	Fall 2019
Project Number:	

Project Information

Stragetic Goal	
Revitalize Central Corridor	
Zero Waste Community	Х
Higher Design Standards	
Transportation	
Planned Growth	Х

Description & Scope:

Construction of new equipment maintenance and operations facility for Public Service. Integration of alternative fuel and renewable energy infrastructure.

Purpose:

The existing Public Services facility was built in 1992 with an addition added in 2004. The current facilities are limited in space and have been determined to be structurally inadequate. Integration of altnernative fuel and renewable energy infrastructure will allow project to provide long term cost savings.

History & Key Milestones:

Resolution 26043-Motion directing staff to proceed with Phase I of Eco Industrial Park. Resolution 26044- Approving Engagement Letter with Piper Jaffray for the Eco Industrial Park. Resolution No. 26186 setting a public hearing for August 3, 2017 regarding the Eco Industrial Park Grading Project.

Financial Summary										
Expenditures	FY2017	FY2018	FY2019	FY2020	FY2021	Total FY 2017-2022				
FY2018 Proposed		7,000,000				7,000,000				
FY2017 Adopted						-				
Change	-	7,000,000	-	-	-	7,000,000				

FUNDING SOURCES: As currently proposed, financing for facility construction would be achieved through the placement of Revnue Bonds that would be held with the following funds:

Road Use-\$3,500,000 (25%) Solid Waste-\$1,750,000 (25%) Sanitary Sewer-\$1,750,000 (25%)

Annual bond payments would be made through operating expenditures from each fund. It is anticipated that the transporation fuel savings will offset a significant portion of the dept service payment.

Funding Overview							
Est. Total Project Cost	7,000,000						
Prior Years Funding							
Prior Years Available							
FY2018 Proposed							
FY2019-2022 Planned	-						
Remaining Need	7,000,000						

FY2018 Budget Distribution								
Planning/Design								
Acquisition/Relocation								
Site Improvements								
Construction	7,000,000							
Furniture/Equipment								
Other								
Total	7,000,000							

Existing Public Service Maintenance Facilities

Background-Public Service Maintenance Facilities

NOVEMBER 1990-MARION PUBLIC SERVICE FACILITY- 195 35TH STREET

SPRING 1991-MARION PUBLIC SERVICE FACILITY- 195 35TH STREET

WINTER 1991-MARION PUBLIC SERVICE FACILITY- 195 35TH STREET

SUMMER 1992

Facility completed at a total cost of \$1.2 Million Dollars.

Provided 24,000 square feet of facility space.

In 2004, Public Service expanded their facilities by utilizing a Cover-All fabric tension structure.

Objective of the facility was to provide transitory solution for equipment storage.

Cost of the structure of the structure was just over \$200,000 (24,000 square foot).

Structural and fabric warranty of 15 years.

In 2013, fabric began to fail on both fabric tension facilities.

Project Background-Eco Industrial Park Phase I

Dear valued customer:

THE FOLLOWING IS AN IMPORTANT SAFETY WARNING AND NOTICE CONCERNING YOUR COVER-ALL BUILDING SYSTEMS INC. TITAN BUILDING.

Recently, Cover-All Building Systems Inc. has undertaken a review of designs utilized for the Titan Building line. Although a review is not complete, there has been an initial determination that some of the structural members and connections for some of the spans of the <u>Titan Buildings</u> may not meet the present combined <u>wind and</u> <u>snow load capacity requirements of applicable building codes</u>.

We are working to obtain additional information, as well as to identify potential measures to address these issues for your building. Cover-All Building Systems Inc. intends to be proactive during the ongoing analysis and to take reasonable steps to promote your safety and the safety of others who may use your building.

Therefore, we are notifying you now of some safety steps. We intend to share additional information as it becomes available. At this time, in order to be appropriately cautious, we recommend you take the steps outlined below.

SAFETY WARNINGS FOR CONTINUED USE OF YOUR TITAN BUILDING:

- Take precautions to see that your building is not occupied during severe weather, such as snow, sleet, freezing rain and winds in excess of 35 MPH (56 km/h). Post appropriate warnings on your building to prevent such use by others.
- Keep snow and ice off the roof and keep snow and ice clear from the sides of your building and do not occupy the building if there is any build up of snow or ice on the roof.
- If possible to do so safely, keep the internal temperature of your building warm to help prevent snow and ice from building up on the roof.
- We encourage you to consult your own structural engineer so that your building can be analyzed for the demands on the structure from local conditions and monitored for higher stress conditions.
- Depending on location and local regulations, it may be necessary to consult local building authorities.

As noted above, Cover-All Building Systems Inc. is working to continue its review of design issues with Titan Buildings, as well as possible solutions. We sincerely regret any inconvenience this situation may cause.

Should you have any questions regarding this letter or any other matter concerning your building, please call the toll free number 877-551-5856.

Information on this matter will be posted on our web site at <u>www.coverallfacts.net</u>.

Sincerely,

Nathan Stobbe President and Chief Executive Officer

Cover-All Building Systems, Inc * 3815 Wanuskewin Road * Saskatoon, SK Canada S7P 1A4 Web: www.coverall.net Contacted vendor for repair and were notified of issues regarding potential structural failures of steel truss systems.

July 8, 2014

Mr. Ryan Miller City of Marion 195 35th Street Marion, Iowa 52302

RE: Structure Analysis Results City of Marion Public Works Building Marion, Iowa KJWW #14.0088.00

Dear Ryan:

At the request of the City of Marion, KJWW Engineering Consultants has completed an analysis of the Marion Public Works Equipment Storage fabric structure. The purpose of this analysis was to determine if the steel trusses, purlins, sway braces, and steel connections are adequate for 2012 IBC Code level loads. Foundations, weld integrity, bolt tightness, and tensile fabric analysis were not done. Based on our evaluation, the structure is not adequate to handle the combined effect of its self-weight, insulation, utilities, snow, and wind. Our analysis showed that multiple truss members and connections are overstressed 20 to 70% beyond their code allowed design capacity. It is our recommendation the City discontinues use of the building prior to winter weather. Our evaluation also indicates the building is designed for a 3-second wind gust of 75mph instead of the IBC 2012 code prescribed value of 105mph.

Our investigation was done using existing drawings dated August 4, 2004 and field measurements obtained on April 4, 2014. Field measurements were taken to the best of our ability without destructive means, and some educated assumptions needed to be made. If more accurate or additional measurements are desired, a testing agency can be hired to remove sections of the truss for additional steel member thickness measurements and material properties.

There are options the City of Marion can explore to extend the life of the structure. For example, strategically placed shoring posts can be used or overstressed truss members can be reinforced. While this design is out of KJWW's scope of services, if the city would like to discuss this please feel free to contact us at (319)730-7662.

> 305 2nd Avenue SE, Suite 362, Cedar Rapids, IA 52401 319.730.7662 Fax: 319.730.7575 www.kjww.com

Structural review was completed and it was indicated that multiple truss members and connections were severely overstressed (20% to 70% beyond code capacity).

KJWW Engineering to review the structural integrity of the tension fabric structure.

Structure design has recorded a number of (structural failures) within the last ten years.

2002-Oregon 2003- Philadelphia Regional Port Authority 2006-Pennsylvaina State Fair-Dairy Convention Facility 2007-Fort Plain, New York-Winter Deicer Storage Facility 2009-Irving, Texas –Dallas Cowboys Practice Facility 2010-Crawford County, Pennsylvania –Dairy Facility

Proposed Public Service Maintenance Facilities

SOUTH ELEVATION

EAST ELEVATION

MARION ECO-INDUSTRIAL PARK FACILITY BUILDING MARION, IOWA

PROPOSED PUBLIC SERVICE MAINTENANCE FACILITY

- Thirty to Forty Year Design Life to allow for continued growth and expansion of maintenance operations.
- Design incorporates hardened Operations Center and Storm Shelter to meet Essential Facility Classification.
- Incorporates bulk storage and handling systems for commodities
- Facility designed for maintenance and storage of alternative fueled vehicles.

MAINTENANCE FACILITIES FOR COMPRESSED NATURAL GAS VEHICLES.

Lighting Systems

Capital Improvement Program					City Facilities																
Eco Industrial Park - Pha	se I Publ	l Public Services Facility																			
Project	Schedule			-																	
SCHEDULE OF IMPROVEMENTS	APRIL	MAY	JUNE	JULY	AUG	SEPT	OCT	NOV	DEC	JAN	FEB	MARCH	APRIL	MAY	JUNE	JULY	AUG	SEPT	OCT	NOV	DEC
DESCRIPTION DUBLIC SERVICE FACILITY ADMINISTRATIVE SCHEDULE	2018	2018	2018	2018	2018	2018	2018	2018	2018	2019	2019	2019	2019	2019	2019	2019	2019	2019	2019	2019	2019
PUBLIC SERVICE FACILITY ADMINISTRATIVE SCIEDULE																					<u> </u>
CONSTRUCTION MANAGER SELECTION					1																
RESOLUTION-CONSTRUCTION MANAGER AGREEMENT			PROPOSE	D																	
FINANCE SCHEDULE	ľ				,					ľ											
RESOULTION-SETTING PUBLIC HEARING FOR REV BOND SALE					PROPOS	ED											1		MAR	N.	
PUBLIC HEARING-REVENUE BOND SALE																	P	RELIN	INT		
UTILITY INSTALLATIONS																					
NATURAL GAS			PROPOSE	D																	
FIBER OPTICS				PROPOS	SED																
WATER					PROPOS	ED															
ELECTRIC						PROPOSE	ED														
SEWER							PROPOS	SED													
ARCHITECTURE AND ENGINEERED DRAWINGS																					
STRUCTURAL				PROPOS	SED																
ELECTRICAL				PROPOS	SED																
ENERGY MODELING					PROPOS	ED															
MECHANICAL					PROPOS	ED															
CTVIL			PROPOSE	D																	
SUBCONTRACTOR BID PACKAGES					,	, i				ĺ											
STEEL BUILDING PACKAGE						PROPOSE	ED	CONST	RUCTIO	N											
MECHANICAL						PROPOSE	-D		CONST	RUCTIO	N	CONSTRU	CTION								
PLUMBING						PROPOSE	ED		CONST	RUCTIO	N	CONSTRU	CTION								
SPRINKLER						PROPOSE	ED					CONSTRU	CTION								
ELECTRICAL						PROPOSE	ED				CONST	RUCTION									
CONCRETE-FLOOR						PROPOSE	ED					CONSTRU	CTION								
CONCRETE-FOOTINGS						PROPOSE	ED	CONST	RUCTIO	N											
PRECAST WALL SYSTEMS						PROPOSE	ED			CONSTR	RUCTIO	N									
GLAZING/DOOR SYSTEMS						PROPOSE	ED					CONSTRU	стюм								
SHOP SYSTEMS							PROPOS	SED				CONSTRU	CTION	-							
DISTRIBUTED GENERATION SYSTEMS																					
TBD																					
																					\square

PUBLIC SERVICE MAINTENANCE FACILITY-NEXT STEPS

SELECTION OF CONSTRUCTION MANAGER

COMPLETE ENERGY ANALYSIS (WEIDT GROUP) AND APPROVAL OF MECHANICAL DESIGN.

SCHEDULE PUBLIC HEARINGS IN ACCORDANCE WITH BOND ADVISOR 2-3 MONTHS.

Capital Improvement Program

City Facilities

Financial Summary

Expenditures	FY2017	FY2018	FY2019	FY2020	FY2021	FY2022	Total FY 2017-2022
FY2019 Proposed			1,500,000				1,500,000
FY2017 Adopted							-
Change	-	-	1,500,000	-	-	-	1,500,000

Eco Industrial Park - Geothermal/Renewable Systems Operating Impact: Long term utility savings with renewable energy infrastructure.

Project Information

Category: Department:	City Facilities Public Services
Priority:	
Fund:	110 - Road Use Fund 670 - Solid Waste 610 - Sanitary Sewer
Est. Completion Date: Project Number:	2019-2022

Funding Overview							
Est. Total Project Cost	1,500,000						
Prior Years Funding							
Prior Years Available							
FY2018 Proposed							
FY2019-2022 Planned	1,500,000						
Remaining Need	-						

Funding Source(s):

FY2018 Budget Distribution							
Planning/Design							
Acquisition/Relocation							
Site Improvements							
Construction							
Furniture/Equipment							
Other							
Total	-						

Description & Scope: Integration of geothermal systems and renewable energy

Would allow for city facilities to become energy independent by utilizing renewable energy resources. Provide long term cost savings to the city. Purposed system could be leased and/or financed through energy savings.

History & Key Milestones: Phase I of Eco Industrial Park is programming both geothermal and renewable energy systems.

Notes: The Weldt Group from Minnesota is currently peforming energy analysis on facility.

Power Purchase Agreement

Demand-Side Management Maximize Program Results Energy Design Assistance Maximize Savings

B3 Benchmarking Track, Manage & Improve Building Performance Upgrade Existing Buildings Custom Tools Design Apps That Influence

Our customizable software platform makes it easy for design teams, utilities and building owners to maximize performance in new and existing buildings of any type, size or age.

About Us

COMMERCIAL NEW CONSTRUCTION PROGRAM

It pays to make energy efficiency part of the plan.

AS A PROGRAM PARTICIPANT YOU WILL RECEIVE THE FOLLOWING COMPLIMENTARY SERVICES:

- A customized energy model simulating how energy will be used
- Assistance identifying and evaluating energy-saving strategies.
- Analysis of energy costs and paybacks
- Financial incentives to help offset the cost of implementing energy-saving strategies

YOUR PROJECT

The energy consultants will create virtual versions of your building to help determine which bundle of energy efficiency strategies makes the most sense for your project.

WHY SHOULD I PARTICIPATE?

Alliant

- Receive fast and reliable energy analysis
- Compare multiple combinations of building systems and energy-saving strategies to see the impacts to your future energy bills
- Have energy questions answered by a dedicated team of knowledgeable consultants

ENERGY

Receive rebates based on kWh and therm savings above code, as predicated by the energy model

COMMERCIAL NEW CONSTRUCTION RDCESS

DOES MY PROJECT OUALIFY?

- Type of Project: New construction, addition or major renovation with a mechanical system replacement
- Size: Energy upgrades impacting 5,000 sq. ft. or more of the building
- Service: Heated and/or cooled using electricity or natural gas provided by a participating lowa utility
- Timing: At a point in the decision-making process where energy analysis results may influence implementation of energy-efficient strategies

CUSTOM STRATEGIES Complex energy efficiency strategies may require advanced modeling and a second results meeting. Ask your energy consultant if the strategy is eligible for complimentary advanced modeling.

101 6-8 WEEKS

SELECT A BUNDLE

ONLINE APPLICATION Complete the screening form on your partnering utility's website or visit www.energyassistance.twgi.com/cnc

1 WEEK

INTRO CALL

Conference call with an energy consultant

- Scope of work and goals
- Use and size of building
- Mechanical system(s) considered

1 WEEK

INTERACTIVE ENERGY MODELING

Create virtual versions of your building utilizing an interactive energy modeling tool to show:

- Estimated energy savings
- Implementation costs
- Payback periods

BUNDLE REQUIREMENTS DOCUMENT

Receive a Bundle Requirements document that provides a guideline to reach your energy conservation goal including your projected rebate.

CONSTRUCTION COMPLETION

Energy consultant visits site and publishes draft verification report documenting implemented strategies following review of: Construction plans and specifications

Construction submittals

4-6 WEEKS

VERIFICATION REPORT

Energy consultant issues final verification report indicating which strategies have been successfully implemented and rebate amount.

RECEIVE REBATE CHECK

THE WEIDT GROUP

CONTACT THE PROGRAM IMPLEMENTOR: 🗾 877-939-1874 OR CNC@TWGI.COM

MidAmerican

Renewable Energy Infrastructure

DISTRIBUTED GENERATION/RENEWABLE ENERGY

DISTRIBUTED GENERATION/RENEWABLE ENERGY

Power Purchase Agreement-is a contract between two parties, one which generates electricity (the seller) and one which is looking to purchase electricity (the buyer).

Benefits for Tax Liable Lessor 30% FEDERAL TAX CREDIT MARCS/ACCELERATED DEPRECIATION SCHEDULE 50% BONUS DEPRECAITION

Power is sold directly back to the entity.

DISTRIBUTED GENERATION/RENEWABLE ENERGY

CITY OF DUBUQUE PUBLIC WORKS-Power Purchase agreement with Eagle Point Solar.

PVSYST V6.32								15/0	3/16 Page 3/4	PVSYST V6.32					15/03/16	Page 4/4
	Grid	d-Conr	nected	Syster	n: Main	n result	s					Grid-Connected	System:	Loss diagram		
Project :	Marion IA (project								Project :		Marion IA project				
Simulation variant :	New simul	ation va	ariant							Simulation vari	ant :	New simulation variant				
Main system parameters PV Field Orientation PV modules PV Array Inverter Inverter pack User's needs Main simulation results System Production	s SI	Si heds disp Nb. (Nb. (N Jnlimited	ystem type position, til Mode of module: Mode Nb. of unit load (grid	e Grid- t 20° JAP6 s 2176; Powe s 3.0) 8183	Connecto -72-320/3 2 rXpert 16 MWh/yea	ed 18B 166-CEC ar Sp	azimuth Pnom Pnom total Pnom total ecific prod.	0° 320 Wj 6964 k 1666 k 4998 k	p Wp W ac W ac Wh/kWp/year	Main system par PV Field Orientati PV modules PV Array Inverter Inverter User's needs	ameters on	s System ty Sheds disposition, Mo Nb. of modu Mo Nb. of u Unlimited load (g Loss diagram	ype Grid-C tilt 20° del JAP6-1 les 21762 del Power nits 3.0 rid) m over the v	connected azimuth 72-320/3BB Pnom Pnom total Xpert 1666-CEC Pnom Pnom total whole year	0° 320 Wp 6964 kWp 1666 kW ac 4998 kW ac	
	Per	Tormance	e Railo Pr	< 81.8 ·	70							1299 kWh/m²	-	Horizontal global irradiation		
The final cost produced on the produced on the produced on the produced cost of the produced	Jun Jul Aug	day day day day day day	New sim Balances a	as generation of a a ulation van and main n	Jan Feb	Mar Apr	Yy): bata Mey Jun Ju	Aug See	Oct Nov Dec			1329 kWh/m² * 42183 m² coll. efficiency at STC = 10.51% 9257 MWh 8685 MWh	+10.8 -1.7% -3.0% -3.0% -0.1% -0.1% -0.1% -2.0% -1.0% -1.8%	 Global incident in coll. plane Near Shadings: irradiance loss IAM factor on global Solling loss factor Effective irradiance on collectors PV conversion Array nominal energy (at STC effi PV loss due to irradiance level PV loss due to temperature Shadings: Electrical Loss, sheds3 s Module quality loss LID - Light induced degradation Module array mismatch loss Ohmic wiring loss Array virtual energy at MPP Inverter Loss during operation (effici 	c.) trings in width ency)	
	GlobHor KWh/m²	T Amb "C	Globino kWh/m²	GlobEff kWh/m²	EArray MWb	E_Grid MWh	EffArrR %	Eff8ysR %					9-1.7%	Inverter Loss over nominal inv. pow	er	
January February March April May June July August September October November	38.1 59.0 95.8 119.3 154.1 155.4 169.9 172.8 137.7 78.6 47.2	-7.82 -3.07 4.25 10.08 15.23 22.93 21.56 21.68 18.50 11.06 4.65	49.6 76.2 110.9 127.0 156.9 196.1 172.5 184.4 159.9 98.5 64.1	45.1 70.3 102.4 117.2 145.1 182.3 159.9 171.4 148.8 91.1 59.0	323 492 689 745 919 1101 991 1054 936 605 405	313 479 608 728 845 1079 971 1033 918 592 363	15.44 15.30 14.73 13.90 13.89 13.31 13.62 13.56 13.88 14.57 14.98	14.95 14.91 13.00 13.59 12.77 13.05 13.34 13.28 13.60 14.24 13.42				8371 MWh 8183 MWh	→ 0.0% → 0.0% → 0.0% → -1.8% → -0.1% → -0.3%	Inverter Loss due to power infestion Inverter Loss over nominal inv. volta Inverter Loss due to voltage thresho Available Energy at Inverter Outp Auxiliaries (fans, other) System unavailability AC ohmic loss External transfo loss Energy injected into grid	, ge Id ut	
Year Legends:	30.7 1298.5 GlobHor Hortzor T Amb Ambler GlobInc Global GlobEff Effectiv	-11.46 9.01 ntal global irrad nt Temperature incident in coil. re Global, corr.	40.3 1436.5 diation plane for IAM and sha	36.5 1329.0	263 8524 EArray E_Grid EfArrR EfRysR	254 8183 Effective energy Energy injecte Effic. Eout arra Effic. Eout syst	15.46 14.07 2y at the output of 1 d into grid ay / rough area tem / rough area	14.92 13.51 the array				0 103 MWN		Energy injected into grid	M	MAR Public S

Melink GEO GEOTHERMAL HVAC

Discover the most energy efficient way to heat and cool a building


```
Questions? Contact
```


HOW WE HELP

- Creative third-party financing solutions, including leasing options, Property Assessed Clean Energy (PACE), Certificates of Participation (COPs), and HB 264
- Incentives include 10 percent Investment Tax Credit, accelerated depreciation (MACRS) and utility rebates

MAINTENANCE & MONITORING

- Patented Melink Manifest[™] Pre-Engineered Pump Station
- Supplier of groundsource heat pumps and high density polyethylene(HDPE) pipe to lower cost

DESIGN & INSTALLATION

- Independent Geothermal Thermal Conductivity Test / In-situ thermal response tests
- Professionally engineered optimal designs for long-term performance while balancing first cost

MAINTENANCE & MONITORING

- Independent flush and purge of all piping
- Verification that ground loop is installed to engineer's specification

WWW.GRT

EXECUTIVE SUMMARY

A formation thermal conductivity test was performed on the horizontal bore installed at a depth of eighteen feet with a GPS location of N 42.02800248° (latitude), W 91.56716120° (longitude) at the Marion Recycling Center site in Marion, Iowa. The horizontal bore was completed on May 30, 2018 by A-One Geothermal. Geothermal Resource Technologies' (GRTI) test unit was attached to the horizontal bore on the afternoon of June 8, 2018.

This report provides an overview of the test procedures and analysis process, along with plots of the loop temperature and input heat rate data. The collected data was analyzed using the "line source" method and the following average formation thermal conductivity was determined.

Formation Thermal Conductivity = 1.19 Btu/hr-ft-°F

Due to the necessity of a thermal diffusivity value in the design calculation process, an estimate of the average thermal diffusivity was made for the encountered formation.

Formation Thermal Diffusivity ≈ 0.82 ft²/day

The undisturbed formation temperature for the tested bore was established from the initial loop temperature data collected at startup.

Undisturbed Formation Temperature as of 6-8-18 ≠ 48.5-48.9°F

The undisturbed soil temperature may vary seasonally in a horizontal bore. Previous tests on vertical bores in the area have had undisturbed temperatures in the range of 51.5-55°F. Additional resources may need to be consulted to determine an appropriate design value.

The formation thermal properties determined by this test do not directly translate into a loop length requirement (i.e. feet of bore per ton). These parameters, along with many others, are inputs to commercially available loop-field design software to determine the required loop length. Additional questions concerning the use of these results are discussed in the frequently asked question (FAQ) section at <u>www.grti.com</u>.

TEST BORE DETAILS (AS PROVIDED BY ENVIRONMENTAL RESOURCE SERVICES, INC.)

Site Name	Marion Recycling Center
Location	Marion, IA
Driller	A-One Geothermal
Installed Date	May 30, 2018
Borehole Diameter	6 inches
Borehole Depth	18 ft
U-Bend Size	1 inch HDPE
U-Bend Length Below Grade	450 ft
Grout Type	GeoPro PowerTECx
Grout Mixture	100 lb TG Lite, 15 lb PowerTECx
	30 gal water
Grouted Portion	Entire bore

DRILL LOG

FORMATION DESCRIPTION	DEPTH (FT)		
Brown gray clay with sand pockets, wet	0'-18'		

WWW.GRTI.COM

THERMAL CONDUCTIVITY TEST DATA

FIG. 1: TEMPERATURE & HEAT RATE DATA VS TIME

Figure 1 above shows the loop temperature and heat input rate data versus the elapsed time of the test. The temperature of the fluid supplied to and returning from the U-bend are plotted on the left axis, while the amount of heat supplied to the fluid is plotted on the right axis on a per foot of bore basis. In the test statistics below, calculations on the power data were performed over the analysis time period listed in the Line Source Data Analysis section.

SUMMARY TEST STATISTICS

Test Date	June 8-10, 2018
Duration	48.0 hr
Average Voltage	230.5 V
Average Heat Input Rate	32,324 Btu/hr (9,471 W)
Avg Heat Input Rate per Foot of Bore	71.8 Btu/hr-ft (21.0 W/ft)
Circulator Flow Rate	7.7 gpm
Standard Deviation of Power	0.19%
Maximum Variation in Power	0.43%

LINE SOURCE DATA ANALYSIS

FIG. 2: TEMPERATURE & HEAT RATE VS NATURAL LOG OF TIME

The loop temperature and input heat rate data versus the natural log of elapsed time are shown above in Figure 2. The temperature versus time data was analyzed using the line source method (see page 3) in conformity with ASHRAE and IGSHPA guidelines. A linear curve fit was applied to the average of the supply and return loop temperature data between 10 and 33.5 hours. The slope of the curve fit was found to be 4.80. The resulting thermal conductivity was found to be **1.19 Btu/hr-ft-°F**.

COMPRESSED NATURAL GAS FUELING STATION

Capital Improvement Program

City Equipment

Compressed Natural Gas Fueling Facilities

Project Information

City Equipment Public Services 110 - Road Use Fund 111 - Road Use Replacement

Est. Completion Date: Project Number:

Category:

Fund:

Department: Priority:

History & Key Milestones:

Resolution 26043-Motion directing staff to proceed with Phase I of Eco Industrial Park. Resolution 25639-Approving utilities extension agreement with Mid-Amercian Engery.

Stragetic Goal							
Revitalize Central Corridor							
Zero Waste Community							
Higher Design Standards							
Transportation							
Planned Growth							

Financial Summary

Expenditures	FY2017	FY2018	FY2019	FY2020	FY2021	FY2022	Total FY 2017-2022
FY2018 Proposed		1,300,000					1,300,000
FY2017 Adopted		-					-
Change	-	1,300,000	-	-	-	-	1,300,000
Change	-	1,300,000	-	-	-	-	1,300,00

Operating Impact:

Funding Overview									
Est. Total Project Cost	1,300,000								
Prior Years Funding									
Prior Years Available									
FY2018 Proposed									
FY2019-2022 Planned									
Remaining Need	1,300,000								

Road Use Reserves

FY2018 Budget Distribution									
Planning/Design									
Acquisition/Relocation									
Site Improvements									
Construction									
Furniture/Equipment	1,300,000								
Other									
Total	1,300,000								

Description & Scope:

Compressed Natural Gas fueling infrastructure that will be capable of providing alternative fueling needs to the Department and Community.

Purpose:

Infrastructure will service to provide signficant long term operational savings and reduction/elimination of vehicle emissions. Notes:

Funding Source(s):

MARION Public Services

Capita	Improve	ement Program				City	Facilities							
	-	e e la ductaiel Deale	Dhasal	Dublic	Comic		1:4-							
	E	co industrial Park	- Phase I	Public	Servic	es Faci	iity							
			Operational Im	ipact										
The inform	ation provided	d includes a fifteen vear project	ed diesel and gase	oline fuel cos	sts for the P	ublic Service	s Departmen	t (top two						
tables) and	l a fifteen year	projected compressed natural	gas consumption	vs. total pro	jected cost	of fuel (botto	om two table	s).						
The fuel ar	alysis was pef	ormed based upon tranporation	n fuel forecasts pr	ovided by th	e United St	tates Energy	Information /	Adminstration					L	
(EIA). Proj	ected fuel con	sumption is based upon the ave	rage fuel usuage	over the last	ten years v	within the De	epartment.						L	
													L	
	I			L I									L	
NOTE: ESTI	MATES BASED	UPON ENERGY FORECASTS AN	ID AVERAGE RAT	E OF FUEL IN	ICREASE W	THIN DEPAR	RIMENTFOR	THE LAST TEN YE	ARS.				ļ	
NOTE: MAI	NTENACE ACT	IVITY LEVELS WILL IMPACT ACT	UAL FUEL USE.				10 MEAD D	POIECTED TO	TAL CASOL DE					
VEAD	CALLONS	AVERAGE DRICE CALLON	TOTAL	1 1			VEAD	CALLONS	AVERAGE DRICE CALLON	TOTAL	1			1
1EAN	GALLONS	AVERAGE PRICE GALLON	101AL				1EAN	GALLONS	AVERAGE PRICE GALLON	C 28.000				
2018-2019	74000	\$2.30	\$ 170,200				2018-2019	14,000	\$2.00	5 28,000				
2019-2020	76280	52.70	\$ 205,956				2019-2020	14,430	\$2.48	5 55,786			l	
2020-2021	78560	53.45	\$ 2/1,032				2020-2021	14,860	\$3.1/	5 47,106				
2021-2022	82120	\$3.65	\$ 203,000				2021-2022	15,290	00.00 (2.26	\$ 51,574 \$ 52,919			I	
2022-2023	85400	\$3.03	\$ 317,688				2022-2023	15,720	\$3.30	\$ 55,019				
2023-2024	87.680	\$3.72	\$ 332,307				2024-2025	16,130	\$3.42	\$ 57,864				
2025-2026	89,960	\$3.88	\$ 349.044				2025-2026	17,010	\$3.57	\$ 60,726				
2026-2027	92 240	\$4.00	\$ 368,960				2026-2027	17,010	\$3.68	\$ 64179				
2027-2028	94 520	\$4.12	\$ 389,895				2027-2028	17,870	\$3.79	\$ 67,727	<u> </u>			
2028-2029	96,800	\$4.24	\$ 410,432				2028-2029	18,300	\$3.90	\$ 71.370				
2029-2030	99,080	\$4.37	\$ 432,979				2029-2030	18,730	\$4.02	\$ 75,295				
2030-2031	101.360	\$4.50	\$ 456,120				2030-2031	19,160	\$4.14	\$ 79,322				
2032-2033	103,640	\$4.64	\$ 480,889				2032-2033	19,590	\$4.27	\$ 83,649				
2033-2034	105,920	\$4.79	\$ 507,356				2033-2034	20,020	\$4.40	\$ 88,088				
2034-2035	108,200	\$4.94	\$ 534,508				2034-2035	20,450	\$4.54	\$ 92,843				
	1,457,600		\$ 5,825,820					275,600		\$ 1,011,383				
	15 YEAR TOT/	AL DIESEL	ESTIMATED 15	YEAR DIESEL	COST									
15 YEAR O	COMPRESSE	D NATURAL GAS FUEL ES	TIMATES				15 YEAR P	ROJECTED TO	OTAL DIESEL AND GASOLIN	E COSTS				
YEAR	GALLONS	AVERAGE PRICE	TOTAL				YEAR			TOTAL PROJE	TED FUEL	COSTS		
2018-2019	74000	0.3	\$ 22,200				2018-2019			\$ 198,200				
2019-2020	76280	0.31	\$ 23,647				2019-2020			\$ 241,742				
2020-2021	78560	0.32	\$ 25,139				2020-2021			\$ 318,138				
2021-2022	80840	0.33	\$ 26,677				2021-2022			\$ 346,440				
2022-2023	83120	0.34	\$ 28,261				2022-2023			\$ 356,207				
2023-2024	85400	0.35	\$ 29,890				2023-2024			\$ 372,921				
2024-2025	87,680	0.36	\$ 31,565		VS		2024-2025			\$ 390,171				
2025-2026	89,960	0.37	\$ 33,285				2025-2026			\$ 409,770				
2026-2027	92,240	0.38	\$ 35,051				2026-2027			\$ 433,139				
2027-2028	94,520	0.39	\$ 36,863				2027-2028			\$ 457,622				
2028-2029	96,800	0.4	\$ 37,752				2028-2029			\$ 481,802				
2029-2030	99,080	0.41	\$ 39,632				2029-2030			\$ 508,274				
2030-2031	101,360	0.42	\$ 41,558				2030-2031			\$ 535,442				
2032-2033	103,640	0.43	\$ 43,529				2032-2033			\$ 564,538				
2033-2034	105,920	0.44	\$ 45,546				2033-2034			\$ 595,444				
2034-2035	108,200	0.45	\$ 47,608				2034-2035			\$ 627,351				
	1457600		\$ 548,202							\$ 6,837,203				
	15 YEAR TOT/	AL CNG	ESTIMATED 15	YEAR CNG CO	OST					15 YEAR TRANS	PORATION F	UEL COST		

Estimated 15 Year Transportation Fuel Savings

CNG-**\$548,202** vs. **\$6,837,203** Conventional Fuel

Capital Improvement Program				City Excilities								<u> </u>		
Capital	mpiove	ement rogram												
	E	co Industrial Park	- Phase I	Public	Sorvic	os Fac	ility							
		co moustnarr ark	- i nase i	T UDIR	Servic	es i ac	inty						 	<u> </u>
			Operational in	ipact									───	
The inform	ation provided	d includes a fifteen year project	ed diesel and gas	oline fuel co	osts for the P	ublic Service	es Departmen	t (top two					└──	
tables) and	l a fifteen year	projected compressed natural	gas consumption	vs. total pr	ojected cost	of fuel (bott	om two table	s).					├ ───	
The first or	-				ale a United Co								├ ───	<u> </u>
(EIA) Proi	ected fuel con	sumption is based upon the ave	rage fuel usuage	over the la	st ten vears v	within the D	enartment	adminstration					<u> </u>	
(201). 110)		samption is based upon the ave	and the rate as a defe	over are ra	St ten years t		eparemente						<u> </u>	-
											<u> </u>			
NOTE: ESTI	MATES BASED	UPON ENERGY FORECASTS AN	D AVERAGE RAT	E OF FUEL I	INCREASE W	THIN DEPA	RTMENT FOR	THE LAST TEN YE	EARS.					<u> </u>
NOTE: MAI	NTENACE ACT	IVITY LEVELS WILL IMPACT ACT	UAL FUEL USE.	1										
15 YEAR I	ROJECTED	TOTAL DIESEL					15 YEAR P	ROJECTED TO	DTAL GASOLINE					
YEAR	GALLONS	AVERAGE PRICE GALLON	TOTAL				YEAR	GALLONS	AVERAGE PRICE GALLON	TOTAL				
2018-2019	74000	\$2.30	\$ 170,200				2018-2019	14,000	\$2.00	\$ 28,000				
2019-2020	76280	\$2.70	\$ 205,956				2019-2020	14,430	\$2.48	\$ 35,786				
2020-2021	78560	\$3.45	\$ 271,032				2020-2021	14,860	\$3.17	\$ 47,106				
2021-2022	80840	\$3.65	\$ 295,066				2021-2022	15,290	\$3.36	\$ 51,374				
2022-2023	83120	\$3.65	\$ 303,388				2022-2023	15,720	\$3.36	\$ 52,819				
2023-2024	85400	\$3.72	\$ 317,688				2023-2024	16,150	\$3.42	\$ 55,233				
2024-2025	87,680	\$3.79	\$ 332,307				2024-2025	16,580	\$3.49	\$ 57,864			L	
2025-2026	89,960	\$3.88	\$ 349,044				2025-2026	17,010	\$3.57	\$ 60,726			L	
2026-2027	92,240	\$4.00	\$ 368,960				2026-2027	17,440	\$3.68	5 64,179			L	
2027-2028	94,520	\$4.12	\$ 389,895	l			2027-2028	17,870	\$3.79	5 67,727			───	I
2028-2029	96,800	\$4.24	\$ 410,432	l			2028-2029	18,300	\$3.90	\$ 71,370			───	l
2029-2030	99,080	\$4.37	\$ 432,979	l			2029-2030	18,730	\$4.02	\$ 75,295			───	I
2030-2031	101,360	54.50	\$ 456,120				2030-2031	19,160	54.14	5 /9,322			 	
2032-2033	105,640	24.04	\$ 607,005				2032-2033	19,590	54.27	5 65,649 ¢ 00,000			 	
2033-2034	103,320	\$4.94	\$ 534 508				2033-2034	20,020	\$4.40	\$ 92.843			<u> </u>	
2034-2033	1.457.600	21.51	\$ 5,825,820				203+2035	275 600	54.54	\$ 1.011.383				
	15 YEAR TOT	AL DIESEL	ESTIMATED 15	YEAR DIES	EL COST			212,000		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				<u> </u>
15 YEAR O	COMPRESSE	D NATURAL GAS FUEL ES	TIMATES				15 YEAR P	ROJECTED TO	OTAL DIESEL AND CASOLIN	E COSTS		1		
YEAR	GALLONS	AVERAGE PRICE	TOTAL				YEAR			TOTAL PROJEC	TED FUEL	COSTS		
2018-2019	74000	0.3	\$ 22,200				2018-2019			\$ 198,200				
2019-2020	76280	0.31	\$ 23,647				2019-2020			\$ 241,742				
2020-2021	78560	0.32	\$ 25,139				2020-2021			\$ 318,138				
2021-2022	80840	0.33	\$ 26,677				2021-2022			\$ 346,440				
2022-2023	83120	0.34	\$ 28,261				2022-2023			\$ 356,207			L	
2023-2024	85400	0.35	\$ 29,890				2023-2024			\$ 372,921			 	I
2024-2025	87,680	0.36	\$ 31,565		VS		2024-2025			\$ 390,171				
2025-2026	89,960	0.37	\$ 33,285				2025-2026			\$ 409,770				
2026-2027	92,240	0.38	\$ 35,051				2026-2027			\$ 433,139				
2027-2028	94,520	0.39	\$ 36,863				2027-2028			\$ 457,622				
2028-2029	96,800	0.4	\$ 37,752				2028-2029			\$ 481,802			L	
2029-2030	99,080	0.41	\$ 39,632				2029-2030			\$ 508,274			 	I
2030-2031	101,360	0.42	\$ 41,558				2030-2031		l	\$ 535,442			───	l
2032-2033	103,640	0.43	\$ 43,529	L			2032-2033			\$ 564,538				L
2033-2034	105,920	0.44	\$ 45,546				2033-2034			\$ 595,444				I
2034-2035	108,200	0.45	5 47,608				2034-2035			5 627,351			 	L
L	1457600		\$ 548,202							\$ 6,837,203			L	I
L	15 YEAR I'OT/	AL UNG	ESTIMATED 15	TEAR CNG	COST				1	15 YEAR TRANS	PORATION	FUEL COST		

Estimated 4 Year Engine Maintenance Comparison

4 Year Diesel **\$9,724** vs. 4 Year CNG **\$4,648**

Capital Improvement I	Program	1			Eq	uipmen	t						
ECO INDUSTRIAL PA	ECO INDUSTRIAL PARK PHASE I COMPRESSED NATURAL GAS CHASSIS PROGRAM -FLEET MAINTENANCE												
The information provided below inc manufactuer. Current emission sta	al gas engine from the same naintenance.												
TOTAL FOUR YEAR MAINTENACE COSTS-DIESEL ENGINE VS. COMPRESSED NATURAL GAS ENGINE -CUMMINS INC. 2017													
ENGINE	2017 CUN	IMINS L9 DIESEL						ENGINE	2017 CUM	MINS ISL G N	NATURAL GA	AS	
MAINTENACE ITEM	HOURS	MILES	MONTHS	COST	FOUR YEAR			MAINTENACE ITEM	HOURS	MILES	MONTHS	COST	FOUR YEAR
OIL AND FILTER	500	15,000	6	\$ 342	\$ 2,736			OIL AND FILTER	500	7500	6	\$ 342	\$ 2,736
FUEL FILTER	500	15,000	6	\$ 88	\$ 704			FUEL FILTER	1000	15000	12	\$ 88	\$ 352
COOLANT FILTER	500	15,000	6	\$ 62	\$ 496			COOLANT FILTER	500	7500	6	\$ 62	\$ 496
OVERHEAD ADJUSTMENT	5000	150,000	48	\$ 536	\$ 536			SPARK PLUGS	1500	45000	18	\$ 148	\$ 394
COOLANT CHANGE	2000	60,000	24	\$ 210	\$ 420			COOLANT CHANGE	2000	60000	24	\$ 210	\$ 420
COALESCING FILTER	15000	45,000	18	\$ 205	\$ 545			VALVE ADJUSTMENT	2000	60000	24	\$ 125	<u>\$</u> 250
DEF FILTER	6500	200,000	48	\$ 1,488	\$ 1,488								\$ 4,648
PARTICULATE FILTER	6500	200,000	48	\$ 2,800	<u>\$ 2,800</u>								
	TOTAL F	OUR YEAR MAIN	TENANCE C	OST DIESEL	\$ 9,725	VS.	\$ 4,648	TOTAL FOUR YEAR MAINT	ENANCE O	COST CNG			

COMPRESSED NATURAL GAS FUELING STATION

Estimated \$2 Million Station Design @ 2800 DGE.

COMPRESSED NATURAL GAS FUELING STATION

Compressed Natural Gas Fuel Stations

COMPRESSED NATURAL GAS FUELING STATION

COMPRESSED NATURAL GAS FUELING STATION

Source: Energy Information Administration, Office of Oil & Gas, Natural Gas Division, Gas Transportation Information System

Minimum Specifications for Natural Gas Infrastructure:

- Total connected gas load in MMBtu/hr or MCF/hr-6" line at 40 MCF
- Maximum daily requirement in MMBtu/day or MCF/day-600 MCF Day
- Maximum hourly MMBtu/hour or MCF/hour-80-90 MCF per hour max
- Requested delivery pressure PSIG-40-60 psi
- Hours per day/days per week that the facility will be operational- 24/7

Sean, Ryan: Below please find our revised estimates to provide 40 mcfh to the Marion site.

CNG site 8 @ 3rd Ave & 44th St-Marion, IA-**\$2,666,425.00** Pipeline upgrades-June 17th, 2014

NNG has sufficient mainline, branch line, and TBS capacity to serve 40 mcfh of incremental load through the Vinton TBS during the winter months only (November through March). Capacity for the summer months (April through October) is currently constrained. For firm service including April through October, facility modifications will be required at a Level A estimated cost of <u>\$2,518,753</u> (including tax gross-up).

Distribution upgrades:

Option 1: serve from the 60 psig system. Install 1700 feet of 4" plastic along 3rd Ave. **Total, option 1 = \$65,103**

Option 2: serve from the 145 psig system. Install 2,800 feet of 4" steel on 3rd Ave between 35th and 44th Streets. **Total, option 2 = \$147,672**

Greg Theis Business Development Manager MidAmerican Energy 563-333-8917

August 4th, 2016- Motion directing staff to facilitate the establishment of a **natural gas franchise agreement** and related infrastructure improvements with **Black Hills Energy**.

This would allow for an additional natural gas utility to operate within the City of Marion and provide the necessary natural gas loads for the development.

INTERSTATE PIPE LINE SUPPLIERS Northern Natural Gas Company Natural Gas Pipeline Company of America ANR Pipe Line Company Northern Border Pipeline INVESTOR OWNED UTILITIES Black Hills Energy Atmos Energy Interstate Power and Light MidAmerican Energy COOPERATIVE OWNED UTILITIES Consumers Energy PRIVATELY OWNED UTILITIES Allerton Gas Company MUNICPALLY OWNED UTILITIES Municipal Utility

November 3rd, 2016-Resolution No. <u>25639</u> approving utilities extension agreement with MidAmerican Energy Company.

The first phase of the Eco Industrial Park programs the utilization of compressed natural gas for vehicles fuels. Upgrades to the natural gas utilities infrastructure were necessary to move forward due to volumes and pressure that would be utilized by the project.

Initial negotiations with Mid American Energy resulted in a price tag of over \$2.5 million.

Eventually the approval of the utilities extension agreement with Mid American Energy allowed for the progression of the first phase of the Eco Industrial Park Development to proceed by allowing for improvements to natural gas infrastructure at no cost to the city.

January 12th, 2017 -Resolution No. <u>25780</u> directing staff to proceed with the annexation of City owned property located north of Highway 100, on both sides of 44th Street.

January 24th, 2017- Motion to receive and file annexation applications from John and Deborah Hennessey, John Hennessey, Kathleen McCarty, Mary Moran and the Iowa Department of Transportation for property located at Highway 100 and 44th Street.

January 24th, 2017- Motion directing staff to proceed with a 100% voluntary annexation of properties located along Highway 100 and 44th Street (John and Deborah Hennessey, John Hennessey, Kathleen McCarty, Mary Moran, the Iowa Department of Transportation and City of Marion).

January 24th, 2017- Resolution No. <u>25802</u> setting public hearing for Februarv 23. 2017 regarding the annexation of properties located along Highway 100 and ⁴ Street.

February 23rd, 2017 - Public Hearing regarding voluntary annexation of properties located north of Highway 100 and adjacent to 44th Street (John and Deborah Hennessey, John Hennessey, Kathleen McCarty, Mary Moran, the Iowa Department of Transportation and the City of Marion).

February 23rd, 2017 -Resolution No. <u>25846</u> approving the annexation of properties located north of Highway 100 and adjacent to 44th Street.

February 2017-Finalized preliminary plats and site plans for the Eco Industrial Park. Submitted to Planning and Zoning for review.

May 18th, 2017- Public hearing regarding a request to rezone property from Linn County A and A-1, Rural Restricted to I-2, General Industrial, for property located west and east of 44th Street and south of 3rd Avenue in Marion, Linn County, Iowa. (City of Marion, Eco-Industrial Park Phase 2).

May 18th, 2017-Ordinance No. <u>17-15</u> amending the Marion Code of Ordinances regarding a request to rezone property from Linn County A and A-1, Rural Restricted to I-2, General Industrial, for property located west and east of 44th Street and south of 3rd Avenue in Marion, Linn County, Iowa (City of Marion, Eco-Industrial Park Phase 2). Initial consideration.

May 18th, 2017 - Resolution No. <u>26043</u> supporting and directing staff to proceed with Phase 1 of the Eco Industrial Park Development.

May 18th, 2017 -Resolution No. <u>26044</u> approving an Engagement Letter and Addendum with Piper Jaffray for the Eco Industrial Park.

May 18th, 2017 - Motion directing staff to solicit bids for grading and utility installations for the Eco Industrial Park Development.

June 8th, 2017- Ordinance No. <u>17-15</u> amending the Marion Code of Ordinances regarding a request to rezone property from Linn County A and A-1, Rural Restricted to I-2, General Industrial, for property located west and east of 44th Street and south of 3rd Avenue in Marion, Linn County, Iowa (City of Marion, Eco-Industrial Park Phase 2). Second consideration and Third Consideration.

June 2017- Finalized site plans and solicited bids for grading package.

July 20th, 2017- Resolution No. <u>26186</u> setting a public hearing for August 3, 2017 regarding the Eco Industrial Park Grading Project.

August 3rd, 2017- Public Hearing regarding the Eco Industrial Park Grading Project.

August 3rd, 2017- Resolution No. <u>26256</u> accepting bids and awarding contract to Rathje Construction for the Eco Industrial Park Grading Project in the amount of \$140,943.50.

COMPRESSED NATURAL GAS CHASSIS PROGRAM

2007 Clean Air Act (<u>42 U.S.C. § 7401</u>) - <u>United States federal law</u> designed to control <u>air pollution</u> on a national level.

Before 2015, diesel fuel sold in the United States contained high quantities of sulfur. Sulfur in diesel fuel produces air pollution emissions that are harmful to human health. In 2006, the U.S. Environmental Protection Agency issued requirements for the reduction of the sulfur content of diesel fuel.

Covered Fuel-use Category	Before 2006	2006	2007-2009	2010-2011	2012								
National													
Highway	500 ppm	15 ppm	15 ppm	15 ppm	15 ppm								
Non-Road	HS	HS	500 ppm	15 ppm	15 ppm								
Locomotive/Marine	HS	HS	500 ppm	500 ppm	15 ppm								

NATURAL GAS, THE CLEAN, SIMPLE & RELIABLE ENGINE PLATFORM OF THE FUTURE

Tier 2

- Advanced Engine Controller
- Exhaust Gas Recirculation
- High Pressure Rail Fuel

Tier 4

- Exhaust Gas Recirculation
- DEF & storage tanks

VS

- Diesel Particulate Filtration
- Selective Catalytic Reduction
- Diesel Oxidation Catalyst
- Variable Geometry Turbo
- Multiple EGT, MAT, MAF & MAP sensors

OR

Natural Gas

- Basic Air Fuel Ratio Controller
- Standard 3 Way Catalyst Best of all!
- NO DEF or storage tanks
- NO EGR, DPF, SCR, DOC, VGT or complex computer electronics

EGR Technology

CNG STUDY-DEMONSTRATION

In August of 2013, the Public Services Department two Ford F-350 pickups to a bi-fuel engine designed that had the ability to run on compressed natural gas and/or propane with conventional fuel.

The vehicles are currently operating on both fuel systems to date. The average price per gallon for compressed natural gas is roughly \$.19 per gallon.

The calculated payback for the entire demonstration project was just under ten months.

ALTERNATIVE FUEL PRICES VERSUS DIESEL

FIGURE 17

COMPRESSED NATURAL GAS CHASSIS

WIDESPREAD IN FLEET MARKET

60% OF ALL REFUSE TRUCKS MFG ARE COMPRESSED NATURAL GAS.

7 YEAR UNLIMITED MILE WARRANTY OPTIONS

First Mid Range engine in North America to receive emissions certifications from the U.S. Environmental Protection Agency (EPA) and the Air Resources Board (ARB) in California for meeting the 0.02 g/bhp-hr optional Near Zero NOx Emissions standard.

POTENTIAL TO OFFSET 98% -99% OF TOTAL EMISSIONS

Dublin, Ohio-CNG Snowplows

Dane County, WI-75 CNG Snowplows

FAQ's

Q: Is Compressed Natural Gas (CNG) safe? A: Yes.

Natural Gas is a very safe fuel and is used by millions of Americans every day. CNG has a higher ignition point combined with a narrow flammability range making it safer relative to gasoline. If a CNG leak exists, the gas, being lighter than air, will dissipate into the atmosphere, quickly eliminating the threat of combustion.

Q: What Natural Gas Vehicles (NGVs) are available?

A. Conversion kits can be purchased and installed by our expert team of mechanics for any size, make or model of vehicles. Alternatively, the Honda Civic GX is a dedicated CNG vehicle which may be purchased through Honda Dealerships.

Q. Are Natural Gas Vehicles Safe?

A. Yes.

NGVs are inspected and held to the same safety and fire protection standards as gasoline or diesel powered vehicles.

Kwik Trip, Inc. 1-608-781-8988 1626 Oak Street P.O. Box 2107 La Crosse, WI 54602-2107

www.ktbeyondgreen.com ktbeyondgreen@kwiktrip.com

300747/05/2012

KWIK TRIP

OPERATIONAL BENEFITS COMPRESSED NATRUAL GAS CHASSIS

- 1. Uniform Fleet Profile provides savings for total cost ownership.
- 2. Acquisition model allows for ability to extend replacement schedules.
- 3. Avoid maintenance expenses associated with Tier 4 Diesel Engines.
- 4. Implementation of Emission Free fleet.
- 5. Opportunity to incorporate multiple service applications on one chassis
- 6. Avoid costs typically associated with conventional dealer purchases

7. Take immediate advantage of energy and cost savings.

City Equipment

CNG Fleet-ROAD USE

Project Information

Category: Department: Priority:	City Equipment Public Services
Fund:	110 - Road Use Fund 111 - Road Use Replacement

Est. Completion Date: 2019-2021 Project Number:

History & Key Milestones:

City Counicl Resolution 26043-Motion directing staff to proceed with Phase I of Eco Industrial Park. City Council Resolution 26044-Approving Enganagement Letter and Placement Agreement with Piper Jaffray.

Stragetic Goal					
Revitalize Central Corridor					
Zero Waste Community					
Higher Design Standards					
Transportation					
Planned Growth					

Description & Scope:

Integeration of fleet that will utilize compressed natural gas as primary transporation fuel.

Purpose:

Provides signficant long term cost savings and reduction/elimination of vehicle emissions. Additional cost savings realized with vehicle maintenance.

Financial Summary

Expenditures	FY2017	FY2018	FY2019	FY2020	FY2021	FY2022	Total FY 2017-2022
FY2018 Proposed		2,975,000	970,000				3,945,000
FY2017 Adopted		-					-
Change	-	2,975,000	970,000	-	-	-	3,945,000

Operating Impact:

Funding Overview							
Est. Total Project Cost	3,945,000						
Prior Years Funding							
Prior Years Available							
FY2018 Proposed							
FY2019-2022 Planned							
Remaining Need	3,945,000						

FY2018 Budget Distribution							
Planning/Design							
Acquisition/Relocation							
Site Improvements							
Construction							
Furniture/Equipment	3,945,000						
Other							
Total	3,945,000						

Funding Source(s): Road Use Replacement and Road Use Reserves

Notes:

Capital Improve	ment Program		Equipm	ent									
											 	I	\vdash
ECO INDUSTRI	AL PARK PHASE I												
COMPRESSED N	ATURAL GAS CHASSIS PRO	GRAM							1				
ROAD USE									<u>├</u> /	ļļ			├───┤
110/10/052									ļ!			!	
		Fiscal Impact							↓ ′	ļ]	└───┤	µ]	
Information contained be	low includes the proposed transition to a c	compressed natural ga	s fleet. For the past six y	ears, the Public Se	ervices Department has				├ ────┦				├ ───
postponed the scheduled	replacement of the current fleet in anticip:	ation of converting the	e compressed natural gas	platform.							 	I	<u>├───</u>
It is proposed that the fle	et procurment will be finananced with cur	rent fund balances in l	Road Use and Road Use	Replacement Fund	ls.								
The current fleet replace	ment model will allow for alternative purc	ahsing models and pro	ovide for a uniform fleet	profile.									
	1			1	1				└────┘		⊢−−−−	/	
YEAR ONE PUBLIC SI	RVICES	COMPRESSED NA	TURAL CAS CHASSI	S PROFILE		HEAVY DUTY	CAPITAL OUTLAN						
Division	Chassis	COMPRESSED IN	YEAR PURCHASED	LIFE CYCLE	CHASSIS SPEC	ENG SPEC	Chilling Outland		· · · · · ·	,			
111 Road Use	2001 Intl 2 1/2 Dump #56	92500	Sep-00	12	CLASS 7	8.9L CNG	\$ 225,000						
111 Road Use	2002 Sterling 2 1/2T Dump #53	72000	Dec-01	12	CLASS 7	8.9L CNG	\$ 225,000		· · · · ·				
111 Road Use	2003 Sterling L7500 Dump #57	76100	Dec-02	12	CLASS 7	8.9L CNG	\$ 225,000						
111 Road Use	2004 Sterling L7500 Dump #58			12	CLASS 7	8.9L CNG	\$ 225,000						
111 Road Use	2005 Sterling 2 1/2 t. Dump #52	88000	1/1/2005	12	CLASS 7	8.9L CNG	\$ 225,000		└────┘	ļ]	┌───┤	<u>/</u>	\vdash
111 Road Use	2006 Sterling 2 1/2 ton #51	97,000	Dec-05	12	CLASS 7	8.9L CNG	\$ 225,000		└────┘	├ ────┤	⊢−−−−	J	───
111 Road Use	2007 International tandem #50 2000 Intl 7400 Tandem Dump #55	120,230	Dec-00	12	CLASS 7	8.9L CNG	\$ 225,000		└──── ┘	ļļ	├─── ┤	ļ	├ ──┤
111 Road Use	2009 Intl 7400 Tandem Dump #59	120000	Oct-08	12	CLASS 7	8 9L CNG	\$ 225,000		<i> </i>		 		\vdash
111 Road Use	2011 Intl 7400 Tandem Dump #60	120000	Feb-12	12	CLASS 7	8 9L CNG	\$ 225,000		ļ		 		<u>├───</u>
111 Road Use	1996 Ford LN8000 tandem #54	63,056	Jun-05	12	CLASS 7	8.9L CNG	\$ 225,000		ļļ				
111 Road Use	Tymco 600 Sweeper #32	162,880.00	2012	12	CLASS 6	8.9L CNG	\$ 365,000		ļ				
111 Road Use	Tymco 600 Sweeper #33	162,880.00	2012	12	CLASS 6	8.9L CNG	\$ 365,000						
111 Road Use	1990 Ford E350 Van #8 (Painter)	65855	1990	12	CLASS 6	8.9L CNG	\$ 250,000		Ļ!			<u>اا</u>	
111 Road Use	2005 Ford F-350 boom truck #7	75,000	Feb-06	12	CLASS 6/7	8.9L CNG	\$ 150,000		└──── ′	[]	└───┤	µ]	L
						TOTAL	\$ 3,605,000		└────┘	ļ!	⊢−−−−	/	
						AOCUSITION TOTAL	\$ 030,000		└──── ╯		└─── ┤	/	<u> </u>
					BUY DOWN ROAD I	ISE REPLACMENT	\$ 2,975,000		<i>!</i>		 	/	\vdash
					BUY DOWN ROAD U	SE RESERVES	\$ 1,475,000		ļ			/	
YEAR TWO PUBLIC S	SERVICES	COMPRESSED NA	TURAL GAS CHASSI	S PROFILE		MEDIUM DUTY	CAPITAL OUTLAY						
Division	Chassis		YEAR PURCHASED	LIFE CYCLE	CHASSIS SPEC	ENG SPEC			!				
111 Road Use	2007 Ford F-250 w/ plow/lift #40	34,135	Aug-06	12	CLASS 6/7	8.9L CNG	\$ 150,000		└──── ′	ļ!		µ]	
111 Road Use	2009 F350 1 Ton Dump Truck #41	39,433	Oct-08	12	CLASS 6/7	8.9L CNG	\$ 150,000		 └────┘	ļ/	└───┤	j]	\vdash
111 Road Use	2000 Ford F-550 1 ton W/plow #49	35,572	Dec-05	12	CLASS 0// CLASS 6/7	8 0L CNG	J 50,000 S J 50,000 S		└────┘		 		\vdash
111 Road Use	2003 Ford E-350 w/ utility hox #42	30400	12/2/2002	12	CLASS 6/7	8 9L CNG	\$ 150,000		├ ────┦		 	/	├───┤
111 Road Use	2004 Ford F350 w util box #45	32,895	9/1/2003	12	CLASS 6/7	8.9L CNG	\$ 150,000		ļļ				
111 Road Use	2005 Chev 1 t Dump w/ plpow #46	33000	10/1/2004	12	CLASS 6/7	8.9L CNG	\$ 150,000		· · · · ·				
						TOTAL	\$ 1,050,000		[]				
						TRADE IN VALUE	\$ 80,000		!				
						AQCUISITION TOTAL	\$ 970,000		└──── ′	[]		µ]	
					BUY DOWN ROAD U	SE RESERVES	\$ 970,000		└────┘	ļ]	┌───┤	J	\vdash
									 <u>├</u> /	ļļ	 		┥───┤
									!		 		\vdash
			·					 					
									└──── ′]	µ]	µ!	\mid
									└──── [」]	ļ]	┌───┤	ــــــا	──┤
									<i>!</i>		 		\vdash
									· · · · · ·		 		

Capital Improvement Program

City Equipment

Transportation

Planned Growth

reduction/elimination of vehicle emissions. Additional cost

savings realized with vehicle maintenance.

CNG Fleet-Sanitary Sewer

	Project Information	
Category:	City Equipment	Stragetic Goa
Department:	Public Services	Revitalize Central Corridor
Priority:		Zero Waste Community
Fund:	615 - Sanitary Sewer Replacement	Higher Design Standards

Est. Completion Date: Project Number:

History & Key Milestones:

City Counicl Resolution 26043-Motion directing staff to proceed with Phase I of Eco Industrial Park. City Council Resoltuion 26044-Approving Engagement Letter and Placement Agreemnent with Piper Jaffray.

Purpose:

	Operating Impact:
al	

Х

Х

Funding Overview							
725,000							
725,000							

Expenditures

FY2018 Proposed

FY2017 Adopted

Change

FY2018 Budget Distribution						
Planning/Design						
Acquisition/Relocation						
Site Improvements						
Construction						
Furniture/Equipment	725,000					
Other						
Total	725,000					

-

-

-

725,000

Funding Source(s): SANITARY SEWER REPLACEMENT

-

362,500

Notes:

Financial Summary Total FY FY2022 FY2017 FY2018 FY2019 FY2020 FY2021 2017-2022 362,500 362,500 725,000

-

362,500

Capital II	mproven	nent Program		Equipm	ent									
		_												
FCO INI	DUSTRIA	AL PARK PHASE I												
COMPDI			CDAN											
COMPRE	222ED IN	ATURAL GAS CHASSIS PROC	JKAM											
SANITA	RY SEWE	2												
			Operational Impact											
Information	contained bel	ow includes the proposed transition to a o	compressed natural g	as fleet.										
For the past	six years, the	Public Services Department has postpone	ed the scheduled repl	acement of the current fle	et in anticipation o	f converting the								
compressed i	natural gas pl	attorm.												
The in community		at the float cominition will be former d	with summer fired has	lanaar in the Canitana Day	learning and T									
replacement	y proposed in model will al	at the neet aqcuisition will be infananced	a nursued and provid	a for a uniform fleet profi	lacement rund. 11	de current neet								
replacement	mouer win a	ion for aneitante acquision models to o	e parsaea ana provia	e ioi a danorar neer pron										
YEAR 1 PUE	BLIC SERV	ICES	COMPRESSED N/	ATURAL GAS CHASSI	S PROFILE		HEAVY DUTY	CAPTIAL OUTLAY						
Division		Chassis		YEAR PURCHASED	LIFE CYCLE	CHASSIS SPEC	ENG SPEC							
610 Sanitary S	ewer	2002 Dodge 3500 #47	29,000	12/1/2001	12	CLASS 6/7	8.9L CNG	\$ 175,000						
610 Sanitary S	ewer	2006 Chevy 1 ton w/plow #48	32,000	Nov-05	12	CLASS 6/7	8.9L CNG	\$ 175,000						
610 Sanitary S	ewer	1996 Ford D 350 #16 Van	75,900	1996	12	CLASS 6/7	8.9L CNG	\$ 200,000						
610 Sanitary S	ewer	2009 Ford F350 w/ service box #43	34,100	Oct-08	12	CLASS 6/7	8.9L CNG	\$ 175,000						
								\$ 725,000	AQCUIS	ITION TO	DTAL			

City Equipment

CNG Fleet/Automated Collections-Solid Waste

	Project Information	
ategory:	City Equipment	Stragetic Goal
epartment:	Public Services	Revitalize Central Corridor
riority:		Zero Waste Community
und:	675 - Solid Waste Replacement	Higher Design Standards
st. Completion Date:	Fall 2019	Transportation

Project Number:

Description & Scope:

Integeration of fleet that will utilize compressed natural gas as primary transporation fuel. Integration of automated curbside collections program to include leaf collection

Planned Growth

Purpose:

Provides significant long term cost savings for tranporation fuels and curbside refuse collections. Increased level of service to the community.

History & Key Milestones:

City Council Resolution 26043-Motion directing staff to proceed with Phase I of Eco Industrial Park. City Council Resolution 26044-Approving Enganagement Letter and Placement Agreemnent with Piper Jaffray.

Financial Summary

Expenditures	FY2017	FY2018	FY2019	FY2020	FY2021	FY2022	Total FY 2017-2022
FY2018 Proposed		4,400,000					4,400,000
FY2017 Adopted		-					-
Change	-	4,400,000	-	-	-	-	4,400,000

FUNDING SOURCES: As currently proposed, financing for procurement would be provided by Solid Replacement and a Solid Waste Revenue Bond. Solid Waste Replacement -\$700,000 Solid Waste Revenue Bond-\$3,700,000

Annual bond payments would result in a projected increase in monthly solid waste fees by \$2.50 to \$3.50 per month.

Solid Waste Replacement-Solid Waste Revenue Bond

Operating Impact:

Funding Overview			
Est. Total Project Cost	4,400,000		
Prior Years Funding			
Prior Years Available			
FY2018 Proposed			
FY2019-2022 Planned			
Remaining Need 4,400,000			

FY2018 Budget Distribution		
Planning/Design		
Acquisition/Relocation		
Site Improvements		
Construction		
Furniture/Equipment	4,400,000	
Other		
Total	4,400,000	

Funding Source(s):

Notes:

<u>CITY OF MARION</u> SOLID WASTE COLLECTIONS

MANUAL COLLECTIONS-EACH DRIVER COLLECTS UPWARD OF 500 DWELLINGS PER DAY (5-7 TONS OF MATERIAL

FIVE TO SEVEN DEDICATED ROUTES ARE PROGRAMMED FOR EACH COLLECTION DAY.

APPROVAL RATING OF 80% TO 90%

CONSISTENT REQUEST FOR LARGE CITY ISSUED WHEELED CONTAINERS FOR COLLECTIONS

MARION Public Services

ALTERNATIVE APPROACH TO RECYCLING

"MIXED BIN COLLECTION PROGRAM"

Increased Efficiencies In Collections

Improve Services To Residents

Opportunity To Increase Recycling Rate and Meet Solid Waste Management Objectives-"Zero Waste"

About EPA

Search EPA.gov

CONTACT US SHARE

9 🖂

Q

Enforcement

Enforcement Home

Enforcement Basics

National Enforcement Initiatives

Air Enforcement

Water Enforcement

Waste, Chemical and Cleanup Enforcement

Criminal Enforcement

Enforcement at Federal Facilities

Data and Results

Policy, Guidance and Publications

Volkswagen Clean Air Act Civil Settlement

(Washington, D.C.) - Through a series of three partial settlements, the EPA has resolved a civil enforcement case against Volkswagen AG, Audi AG, Dr. Ing. h.c. F. Porsche AG, Volkswagen Group of America, Inc., Volkswagen Group of America Chattanooga Operations, LLC, and Porsche Cars North America, Inc. (collectively "Volkswagen"), subject to reservations set forth in each of the partial settlements. First, on June 28, 2016, the United States lodged with the United States District Court for the District of Northern California the first partial settlement with certain of these Volkswagen entities addressing vehicles containing 2.0 liter diesel engines (the "2.0 liter partial settlement"). On October 25, 2016, the court approved the 2.0 liter partial settlement. Second, on December 20, 2016, the United States lodged with the court the second partial settlement with Volkswagen addressing vehicles containing 3.0 liter diesel engines (the "3.0 liter partial settlement"). On May 17, 2017, the court approved the 3.0 liter partial settlement. Third, on January 11, 2017, the United States lodged with the court the third partial settlement with Volkswagen addressing civil penalties and injunctive relief to prevent future violations (the "third partial settlement"). On April 13, 2017, the court approved the third partial settlement.

Settlement Resources

- 01/11/17 <u>Reference</u>
 <u>News Release</u>
- 12/20/16 <u>Reference</u>
 <u>News Release</u>
- 06/28/16 <u>Reference</u>
 <u>News Release</u>
- <u>Related Consent Decrees</u>
- <u>Amended Complaint</u>
- Environmental <u>Mitigation Trust</u> <u>Agreements</u>
- <u>FAQs: Beneficiaries to</u> the VW Mitigation Trust
- <u>FAQs: Zero Emission</u> <u>Vehicle Investment</u>
- <u>Appointment of Trustee</u>
- <u>EPA approved National</u> <u>ZEV Investment Plan</u> <u>(Public Version)</u>

STATE OF IOWA

VOLKSWAGEN CLEAN AIR ACT PARTIAL SETTLEMENTS

IOWA'S BENEFICIARY MITIGATION PLAN

The state of Iowa must submit a Beneficiary Mitigation Plan no later than 30 days prior to submitting its first funding request. This plan summarizes how the state plans to use the mitigation funds allocated to it under the environmental mitigation trust. Beneficiaries may only use their allocation for eligible nitrogen oxides reduction projects and for eligible administrative expenditures.

Iowa has completed <u>a draft plan</u> and it's available for public review. The draft plan outlines how Iowa intends to use VW funds to positively impact air quality by reducing NOx emissions. Comments on the plan will be accepted through Friday, May 25, 2018. Your comments may be incorporated into the final version before submitting the plan to the trustee.

MITIGATION PLAN REQUIREMENTS

- 1. The plan must be submitted no later than 30 days prior to submitting its first funding request.
- 2. The plan is intended to provide the public with insight into the high layer vision for use of the funds

ELIGIBLE NITROGEN OXIDES REDUCTION PROJECTS

Click on the boxes below to view more information about each project.

- > Class 8 local freight or port drayage trucks (large trucks)
- Class 4-7 local freight (medium trucks)

MITIGATION PLAN REQUIREMENTS

- 1. The plan must be submitted no later than 30 days prior to submitting its first funding request.
- 2. The plan is intended to provide the public with insight into the high-level vision for use of the funds.
- 3. The plan shall explain the process by which the beneficiary shall seek and consider public input on its plan.
- The plan must list the eligible mitigation actions selected to achieve the goals and the percentage of funds to be used for each action.
- 5. The plan must include a description of how the beneficiary will consider the potential beneficial impact of the selected actions on air quality in areas that bear a disproportionate share of air pollution burden.
- The plan also needs to contain a general description of the expected ranges of emissions benefits realized by the implementation of the selected actions identified in the plan.
- 7. The plan needs to contain only the level of detail "reasonably ascertainable" at the time of submission.
- 8. The plan is not intended to be binding and can be adjusted by the beneficiary.

ELIGIBLE NITROGEN OXIDES REDUCTION PROJECTS

Click on the boxes below to view more information about each project.

- > Class 8 local freight or port drayage trucks (large trucks)
- ▲ Class 4-7 local freight (medium trucks)
- Includes 1992-2009 model years (may include 2010-2012 models if state already requires).
- Eligible medium trucks must be scrapped.
- Government-owned: All options up to 100 percent funded.
- Nongovernment owned: Variable fund percentages based on mitigation
 - New diesel or alternative fuel engine (e.g., natural gas, propane, hybrid) vehicle.
 - Repower: Up to 40 percent funded.
 - Purchase new = up to 25 percent funded
 - All-electric engine: Includes infrastructure.
 - Repower: Up to 75 percent funded.
 - Purchase new: Up to 75 percent funded.

Class 4-8 school, shuttle, or transit buses

- Freight switchers (pre-Tier 4 switcher locomotives that operate 1,000 or more hours per year)
- > Ferries/Tugs (unregulated, Tier 1 or Tier 2 marine engines)
- Ocean going vessel (OGV) shore power

ECO INDUSTRIAL PHASE II RETAIL FUELING STATION

Capital Improvement Program

City Facilities

Eco Industrial Park - Phase II Retail Fueling Center

	Project Information
Category:	City Facilities
Department:	Public Services
Priority:	
Fund:	110 - Road Use Fund
	610 - Sanitary Sewer
	670 - Solid Waste

Est. Completion Date: TBD Project Number: 110 000001

History & Key Milestones: Resolution No.

Stragetic Goal	
Revitalize Central Corridor	
Zero Waste Community	X
Higher Design Standards	
Transportation	Х
Planned Growth	X

Description & Scope:

Cosntruction of retail fuels station and bulk fuel terminal that includes integration of alternative fuels.

Purpose:

Construction of retail fueling and bulk fuel terminal to provide long term cost savings to the City of Marion. Financial Summary

Expenditures	FY2017	FY2018	FY2019	FY2020	FY2021	FY2022	Total FY 2017-2022
FY2018 Proposed		2,700,000					
FY2017 Adopted							-
Change	-	2,700,000	-	-	-	-	-

Operating Impact:

Funding Overview			
Est. Total Project Cost			
Prior Years Funding			
Prior Years Available			
FY2018 Proposed			
FY2019-2022 Planned	-		
Remaining Need	-		

Funding Source(s): Revenue Bond

Notes:

FY2018 Budget Distribution				
Planning/Design				
Acquisition/Relocation				
Site Improvements				
Construction	2,700,000			
Furniture/Equipment				
Other				
Total	2,700,000			

Eco Industrial Park Phase II-Retail Fueling Facilities

-Construction of fleet and retail fueling infrastructure to serve large fleets and retail customers

-Provide citywide transportation fuel savings.

-Increase transportation fuel security.

-Opportunities for Revenue Sharing

Eco Industrial Park Phase II-Retail Fueling Facilities

BULK FUEL TERMINAL FUEL DELIVERY SERVICES

RETAIL DISPENSERS

HOME PRODUCTS SERVICES

PETROLEUM PRODUCTS SUPPLIER

Search

1205 1st Ave

P.O. Box 5716 Coralville, IA 52241

(319) 351-6498

CONTACT DETAILS

Based out of Coralville, IA. We offer products ranging from gas and diesel to various fuel additives with services that include bulk delivery to your location! Here is more information on all of our products and services.

PSC carries only the best brands and has membership in numerous reputable organizations. Contact us today to discuss how we can fulfill your petroleum needs.

Locatio

Des Moines Terminal Average Fu

Monday, June 11, 2018	
Ultra LS Diesel # 1	2.4206
Ultra LS Diesel # 2	2.2455
Unleaded 87	2.2255
Ethanol	1.4962
E-70	1.7150
U87E10	2.0145
Biodiesel B100-(Multi-blend) (DM) W/R	3.3850

Tuesday, June 12, 2018	
Ultra LS Diesel # 1	2.4194
Ultra LS Diesel # 2	2.2408
Unleaded 87	2.2159
Ethanol	1.4915
E-70	1.7088
U87E10	2.0059
Biodiesel B100-(Multi-blend) (DM) W/R	3.3850

BRANDED FUEL

UNBRANDED FUEL

Eco Industrial Park Phase II-Retail Fueling Facilities

- -Will include leased or cost shared fueling facilities.
- -Operations will be privately run.
- -Revenue share will be contingent on city investment.
- -Opportunity to brand and market transportation products.

FRONT SIDE

RIGHT SIDE

BEER CAVE & COOLER

COOLER

DROP CEILING FASCIA

CASHIER, PIZZA & BEVERAGES

FRONT WALL SEATING

CEILING PODS ABOVE SEATING

HOT FOOD & COFFEE ISLAND

Eco Industrial Park Phase II-Retail Fueling Facilities-Next Steps

-Provide final schedule of improvements for fueling infrastructure.

-Complete and execute third party operations and maintenance agreement.

-Finalize cost of improvements and move towards construction package (Summer of 2019).

MATERIAL RECOVERY FACILITIES

Capital Improvement Program

City Facilities

Eco Industrial Park - Phase III Zero Waste Facility

		Project Information
Category:	City Facilities	
Department:	Public Services	
Priority:		
Fund:	670 - Solid Waste	
Est. Completion Date:	TBD	
Project Number:	670 000001	

History & Key Milestones:

Stragetic GoalRevitalize Central CorridorZero Waste CommunityXHigher Design StandardsTransportationTransportationXPlanned GrowthX

Description & Scope:

Cosntruction of facilities and equipment to recycle muncipal solid waste.

Purpose:

Achieve Strategic Goal of becoming a Zero Waste Community. Provide cost savings and increase level of solid waste services to the community.

Financial Summary

Expenditures	FY2017	FY2018	FY2019	FY2020	FY2021	FY2022	Total FY 2017-2022
FY2018 Proposed			4,000,000				
FY2017 Adopted							-
Change	-	-	4,000,000	-	-	-	-

Operating Impact:

Funding Overview						
Est. Total Project Cost	4,000,000					
Prior Years Funding						
Prior Years Available						
FY2018 Proposed						
FY2019-2022 Planned	4,000,000					
Remaining Need	-					

Private Equity or Revenue Bond

Funding Source(s):

Notes:

FY2018 Budget Distribution				
Planning/Design				
Acquisition/Relocation				
Site Improvements				
Construction	4,000,000			
Furniture/Equipment				
Other				
Total	4,000,000			

195

YARD WASTE FACILITIES AT PUBLIC SERVICE 2010

YARD WASTE FACILITIES AT PUBLIC SERVICE 2017

MATERIAL RECOVERY FACILITIES

Anaerobic compost operations can take 6 to 8 months to process compost materials.

Front End loader is utilized to turn composted piles which can result in significant fuel costs.

Aerobic Composting Operations has reduced processing time down to eight weeks.

Faster processing time and less odor.

Compost-is organic matter that has been decomposed (reverse photosynthesis where organic cells are broken down.

Requires four equally important ingredients to work effectively:

Carbon — for energy; the microbial oxidation of carbon produces the heat.

Nitrogen — to grow and reproduce more organisms to oxidize the carbon.

Oxygen — for oxidizing the carbon, the decomposition process.

Water — in the right amounts to maintain activity without causing anaerobic conditions.

Aerobic conditions very critical.

Composting Process- Plant cells are decomposed (reverse photo synthesis) and as a result, everything within the plant cell (high energy electrons) are released.

Humufication Polymer Protein – decaying cell matter (through composting) is bonded together in a polymer protein chain through the humification process...when applied to the soil released microbes that interact with soil structure.

Compost vs. Humus Compost

Humus Compost- refers to any organic matter that has reached a point of stability by the formation of humus protein chains by the polymerization of microbes. Formation and structure remains stable for centuries, if not a millennia.

Humified Compost

Soil Impact Analysis	Desirable Level	Your Results	Your Points	Total Potential Points		. ``	/alue Ch	art	
Nitrogen Cycle % N (Dry Basis) NH ₃ - Ammonia NO ₂ - Nitrite Nitrogen	0.6 - 1.2 < 50 0	2.0% 0 ppm 0 ppm	50	84	Nitrogens	25%	50%_	75%	100%
NO ₃ - Nitrate Nitrogen	600 - 900	189 ppm							
pH	7.3 - 8.1	8.2su	11	13	рН				
Salts Sodium Conductivity	125 - 200 2000 - 3500	300 ppm 2,160 Ergs	26	26	Salts				
Sulfur Sulfate Sulfide	100 - 500 0	167 ppm * 1 level	-16	26	Sulfurs				
Germination 7 Day Germination % 14 Day Vigor %	> 80 > 70	100.0 % 100.0 %	26	26	Germination				
Humic lons	50 - 80	633.0	-4	13	Humic lons				— II.
Redox Potential Oxygen Potential Moisture % Organic Carbon	26.5 - 29 40 - 50	28.2 50.0 % 24.0 %							
C:N Ratio	15 - 20	12.0:1	7	13	C:N Ratio				
Soil Impact Score				200					
Pathogens E. Coli Salmonella	neg (=< 3 MPN/g) neg (=< 0.5MPN/g)	*NT *NT	0	27	Pathogens				
Microbe Profile & Dive	rsity Analysis		0	173					
Aerobic Count Anaerobic Bacteria Yeasts & Molds-Fungi Actinomycetes Pseudomonads N-Fixing Bacteria Aerobic Anaerobic	100M - 10B 1:10 Aerobic 10K - 500K 1M - 100M 10K - 1M 100K - 1M 100K - 1M	*NT *NT *NT *NT *NT *NT *NT -1			Microbes				
Diversity	>6.5	0							
Maturity Index Stability	>50 <20	*N1 *NT			Overall				
* NT Indicates "Not Tested"	Microbial S	core:	0	200		L	Value Le	vels	———]
Notes: MMM: n.d., Ash 29.7% E.Coli: n.d., Salmonel Fecal Coliform: n.d. Weed Seed Germinatior	5, % Solids:50% la: n.d. n: n.d.	129 So 0 Mii 129 Fir	il Value crobial 1al Scor	Value e					

Trace Eleme	nts (ppm)					Structu	ire	
В	20.4 ppr	n	Cu 16.4 ppm		Density			
Fe	3,619.0 ppr	n	Zn	56.3 pp	m			
Building Blo	cks (% Dry E	asis)				Chlorid	les	
Ca	3.7 % [Dr	K	0.9 %	Dr		CI	
Mg	1.0 % [Dr	P	0.3 %	Dr			
Heavy Metals	s (ppm)							
AI			Hg	0 pp	m	Ni	4.5ppm	
As	0 ppr	n	Mn	247.0 pp	m	Pb	10.9ppm	
Cd	0 ppr	n	Mo			Se	Oppm	
Cr	10.0 ppr	n						
Weed Seed (Germination							
Weeds	%							
Pathogen Inl	nibition Test	<u>s</u>						
			% Str	ong	% Partial	9	6 None	
			% Str	ong	% Partial	9	6 None	
Other Tests								
Dewar Self-	Heating		Entero	coccus		Helmir	nth Ova	
Hum	ic Acid		Fecal Coliform			Phytotoxicity		
Staph. /	Aureus	0	Aflatoxi	n	0	Listeria		0
Cation Excl	ion Exch. Cap. Vol. Org. Acids			Vol. S	olids			

MATERIAL RECOVERY FACILITIES

Significant increase in citizen traffic and volumes.

During peak season over 1,000 vehicles per day will utilize the yard waste facilities (25,000 to 28,000 vehicles annually).

Volumes of yard waste increasing as city continues to grow.

Adequate facilities for processing organic material from storm damage.

Marion's Zero Waste Objective

- Process municipal solid waste (MSW) into commodities
- <u>>90% diversion</u> of landfill materials to recycling and energy products (Zero Waste)
- Low capital and operating costs.
- Regional cooperation and integration.
- Operations and Maintenance executed by city staff.
- Ability to expand facility and incorporate additional technologies
- Incorporate within Eco Industrial Park operations.

Vickers Seerdrum at West Yellowstone Compost Facility

Seerdrum Operation at West Yellowstone Compost Facility. Purchased in 2003...manufactured in 1969.

Cellulose Material 40% to 60% of solid waste composition Recyclables

Invessel Composting at West Yellowstone

Compost without seerdrum separation @ 10 weeks

Air Classifier- Utilized to screen compost

Screen inorganic material

Finished Material/Compost

OBJECTIVES FOR MATERIAL RECOVERY FACILITIES

Introduce new processing technologies for organic diversion.

Expand footprint of citizen yard waste drop off area.

Expansion of organic products offered at the facility.

MATERIAL RECOVERY FACILITIES-NEXT STEPS

Completion of site design and schedule of civil improvements.

File and obtain related permits with IDNR for expanding organic operations.

Schedule and execute demonstration project for organic diversion.

Propane (Auto-gas)

Propane (Auto-gas)

Propane is domestically available, high energy, cleaning burning and relatively low cost.

Third most common transportation fuel in world.

2014 MID-WEST PROPANE CRISIS

Propane Shortage and Heating Assistance Webpage

Low-Income Home Energy Assistance Program (LIHEAP)

Low-income lowans may be eligible for assistance with their energy bills, through the LIHEAP program. <u>Individuals can go to their local Community</u> <u>Action Agency to apply</u>. Income requirements and <u>guidelines are available online</u> or via the Department of Human Rights at 515-281-0859.

On Thursday, January 30, the U.S. Department of Health and Human Services released a second LIHEAP appropriation of \$7,419,062 to the State of Iowa.

MARION Public Services

Reductions in Regulatory Burdens to Propane Transport

The U.S Department of Transportation established a regional emergency declaration suspending the regulatory provisions pertaining to hours of service